Монография американского автора посвящена методам условной оптимизации, основанным на учете ограничений задачи с помощью множителей Лагранжа. Рассматриваются различные классы задач условной оптимизации: с простыми ограничениями, с ограничениями в форме равенств и неравенств, гладкой и недифференцируемой оптимизации, выпуклого программирования и др. Для них изучаются итеративные процессы, основанные на последовательной безусловной оптимизации вспомогательных функций: функции Лагранжа, гладких и н...
Монография американского автора посвящена методам условной оптимизации, основанным на учете ограничений задачи с помощью множителей Лагранжа. Рассматриваются различные классы задач условной оптимизации: с простыми ограничениями, с ограничениями в форме равенств и неравенств, гладкой и недифференцируемой оптимизации, выпуклого программирования и др. Для них изучаются итеративные процессы, основанные на последовательной безусловной оптимизации вспомогательных функций: функции Лагранжа, гладких и негладких штрафных функций, модифицированных функций Лагранжа. Наиболее подробно исследуются так называемые методы множителей, в которых используются модифицированные функции Лагранжа: наряду с обычными методами первого порядка рассматриваются методы второго порядка ньютоновского и квазиньютоновского типа, комбинации методов множителей и штрафов с использованием линеаризации, а также основанные на методе множителей процедуры аппроксимации негладких и плохо обусловленных задач. Помимо теоретического исследования сходимости, значительное внимание уделено обсуждению вычислительной эффективности рассматриваемых методов и вопросам их практического применения. Изложение сопровождается рассмотрением простых примеров.
Для научных работников, занимающихся разработкой методов оптимизации и их использованием в планировании, управлении и проектировании. Книга «Условная оптимизация и методы множителей Лагранжа» автора Д. Бертсекас оценена посетителями КнигоГид, и её читательский рейтинг составил 7.40 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий