В учебном пособии рассматриваются разностные схемы для уравнений эллиптического типа. Подробно анализируется теория метода сеток на примере задачи Дирихле для уравнения Пуассона. Исследуется применение теории метода сеток к решению краевых задач для уравнений параболического и гиперболического типов. Освещены вопросы аппроксимации, устойчивости и сходимости явных и неявных разностных схем. Приводится метод установления для численного решения задачи Дирихле в случае уравнения Лапласа. Даются мето...
В учебном пособии рассматриваются разностные схемы для уравнений эллиптического типа. Подробно анализируется теория метода сеток на примере задачи Дирихле для уравнения Пуассона. Исследуется применение теории метода сеток к решению краевых задач для уравнений параболического и гиперболического типов. Освещены вопросы аппроксимации, устойчивости и сходимости явных и неявных разностных схем. Приводится метод установления для численного решения задачи Дирихле в случае уравнения Лапласа. Даются методы решения интегральных уравнений, а также примеры задач, которые приводятся к таким уравнениям. Для студентов математических и инженерных специальностей вузов, аспирантов и научных работников.;Гриф:Допущено УМО по классическому университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям высшего профессионального образования 010101 – «математика» и 010901 – «механика» Книга «Методы приближенных вычислений. Часть III» авторов Д. М. Михайлов, Н. Меркулова оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий