Читать онлайн «Введение в OLAP-технологии Microsoft»

Автор Алексей Федоров

Введение в OLAP Алексей Федоров, Наталия Елманова Часть 1. Основы OLAP Что такое хранилище данных Что такое OLAP Многомерные кубы Некоторые термины и понятия В цикле статей «Введение в базы данных», публиковавшемся в последнее время, мы обсуждали различные технологии и программные средства, применяемые при создании информационных систем — настольные и серверные СУБД, средства проектирования данных, средства разработки приложений, а также Business Intelligence — средства анализа и обработки данных масштаба предприятия, которые в настоящее время становятся все более популярными в мире, в том числе и в нашей стране. Отметим, однако, что вопросы применения средств Business Intelligence и технологии, используемые при создании приложений такого класса, в отечественной литературе пока еще освещены недостаточно. В новом цикле статей мы попробуем восполнить этот пробел и рассказать о том, что представляют собой технологии, лежащие в основе подобных приложений. В качестве примеров реализации мы будем использовать в основном OLAP-технологии фирмы Microsoft (главным образом Analysis Services в Microsoft SQL Server 2000), но надеемся, что основная часть материала будет полезна и пользователям других средств. Первая статья в данном цикле посвящена основам OLAP (On-Line Analytical Processing) — технологии многомерного анализа данных. В ней мы рассмотрим концепции хранилищ данных и OLAP, требования к хранилищам данных и OLAP-средствам, логическую организацию OLAP-данных, а также основные термины и понятия, применяемые при обсуждении многомерного анализа. Что такое хранилище данных Информационные системы масштаба предприятия, как правило, содержат приложения, предназначенные для комплексного многомерного анализа данных, их динамики, тенденций и т. п.
Такой анализ в конечном итоге призван содействовать принятию решений. Нередко эти системы так и называются — системы поддержки принятия решений. Принять любое управленческое решение невозможно не обладая необходимой для этого информацией, обычно количественной. Для этого необходимо создание хранилищ данных (Data warehouses), то есть процесс сбора, отсеивания и предварительной обработки данных с целью предоставления результирующей информации пользователям для статистического анализа (а нередко и создания аналитических отчетов). Ральф Кимбалл (Ralph Kimball), один из авторов концепции хранилищ данных, описывал хранилище данных как «место, где люди могут получить доступ к своим данным» (см. , например, Ralph Kimball, «The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses», John Wiley & Sons, 1996 и «The Data Webhouse Toolkit: Building the Web-Enabled Data Warehouse», John Wiley & Sons, 2000). Он же сформулировал и основные требования к хранилищам данных: • поддержка высокой скорости получения данных из хранилища; • поддержка внутренней непротиворечивости данных; • возможность получения и сравнения так называемых срезов данных (slice and dice); • наличие удобных утилит просмотра данных в хранилище; • полнота и достоверность хранимых данных; • поддержка качественного процесса пополнения данных.