Анатолий Овчинников
Рассуждения об основах математики
1. Введение
Эта книга есть логическое продолжение рассуждений о связи математики и опыта. Начало этим рассуждениям было положено в недавно вышедшей в свет книге [1], в которой сейчас для нас наиболее важны пятая и шестая её главы. Затем появились ещё две важные по этой теме статьи [2], [3]. Все изложенное в этой книге и в этих статьях, мы будем считать известным, а потому настоятельно рекомендуется сначала ознакомиться с их содержанием. Сейчас становится целесообразным объединить всё, имеющее отношение к основам математики в одну книгу, что здесь и сделано. Заметим, что основания физики и основания математики на деле не различаются; в их основе лежат экспериментальные факты. Но физика использует математический аппарат, а поэтому различие между физикой и математикой (в их основаниях) становится практически неразличимым. В такой ситуации трудно различить: где начинается (и кончается) физика, а где начинается математика, и наоборот. Вот почему мы полагаем, что и книгу [1] и данную здесь книгу нужно рассматривать как единое целое.
Мы продолжаем здесь опровергать некоторые устойчивые заблуждения и мифы, имеющие давнее происхождение. Многие из нас интуитивно понимают, что с неевклидовыми геометриями и теорией относительности «что-то не ладно». В этой книге мы покажем, что это «что-то не ладно» возникает из-за той идеалистической позиции, которую занимают математики и физики-теоретики при изучении законов природы. Мы здесь будем говорить лишь о традиционной геометрии и математике, то есть о тех, с которых обычно начинается их изучение в средней школе.
В частности, в них имеются понятия геометрической фигуры, числа, имеются знаки: <, =, >. Имеются также простейшие операции: сложение, умножение, вычитание, деление. Однако читатель, ознакомившись с изложенным здесь, легко увидит, что все сказанное в книге будет справедливо и для других разделов математики.Кратко напомним самое важное для нас здесь из [1].
а) геометрия начинается с экспериментальных фактов, называемых иначе построениями
б) определения и аксиомы геометрии и математики есть рациональное осмысление экспериментальных фактов (построений)
в) критерием существования геометрической фигуры в реальном пространстве является аксиома существования
г) в реальном пространстве существует только одна геометрия это – евклидова геометрия.
Добавим ещё здесь, что в книге часто будут напоминаться банальные истины, но они будут чередоваться с тем, о чем мы ещё не думали. Но так бывает всегда, когда речь заходит об основах науки. Банальные истины начинают забываться в процессе длительного обучения, а потому их приходится напоминать.
Основная часть
1. Рациональное и иррациональное осмысление экспериментальных фактов
Мы не будем здесь давать строгое определение понятию рационального осмысления экспериментальных фактов (оно вряд ли возможно). Мы ограничимся здесь лишь некоторыми примерами из науки рационального и нерационального (иррационального) осмысления экспериментальных фактов.