АКАДЕМИЯ ПАУК СССР
Институт проблем механики
Ф. Л. ЧЕРНОУСЬКО, А. А. МЕЛИКЯН
Игровые задачи
управления
и поиска
Издательство «Наука»
Москва 1978
УДК 519. 95
Ф. Л. Черноусько, А. А. Меликян. Игровые задачи
управления и поиска. М. , «Наука», 1978 г. Монография содержит постановку и решение ряда новых игровых
задач управления, наблюдения и поиска для динамических систем. Исследованы минимаксные задачи импульсной коррекции возму-
возмущений и оптимального управления в условиях неопределен-
неопределенности. Значительное внимание уделено дифференциальным играм
при неполной информации, при наличии помех и запаздывания
информации. Приведено решение ряда конкретных игровых задач,
в том числе задачи об уклонении от многих преследователей. Из-
Изложен численный способ построения управления в конфликтной
ситуации. Построены оптимальные численные алгоритмы поиска
экстремумов и корней для некоторых классов функций. Моногра-
Монография основана на исследованиях авторов и рассчитана на научных
работников, инженеров и аспирантов, специализирующихся в об-
области теории и систем управления, прикладной и вычислительной
математики.
В книге 50 рис. , 4 табл. , список лит. — 87 назв. Ответственный редактор
доктор физико-математических наук
Б. Н. Рассмат-
Рассматриваемые системы описываются дифференциальными уравнениями
или рекуррентными конечно-разностными соотношениями. Пред-
Предполагается конфликтная ситуация, характерная для теории игр. А именно, система подвержена управляющему воздействию од-
одной стороны и другому воздействию, не контролируемому управ-
управляющей стороной, которое отождествляется либо с противником,
либо с неопределенными факторами («прирЪдой»). Ставятся и ре-
решаются задачи о построении оптимального управления системой
при наличии различного рода воздействий противника, неопреде-
неопределенных факторов, неполноты и несовершенства поступающей ин-
информации о процессе. Оптимальность управления понимается
в минимаксном смысле, т. е. с точки зрения получения управля-
управляющей стороной наилучшего гарантированного результата при
произвольных допустимых воздействиях другой стороны. Постановки задач, рассматриваемых в монографии,[возникли
в результате моделирования и формализации реальных "ситуаций
при исследовании управления динамическими системами. Сюда
относится учет таких факторов, как ошибки измерений, влияние
внешних возмущающих сил, наличие запаздывания информации
и информационных помех, неполнота и дискретность процесса
наблюдений. Обычно в теории оптимального управления рассматриваются
управляемые динамические системы в предположении, что на-
начальное фазовое состояние известно точно. Ставится задача оты-
отыскания управления как функции времени, доставляющей минимум
(или максимум) заданному функционалу качества управляемого
процесса.