m
П. И. РОМАНОВСКИЙ
ОБЩИЙ КУРС
МАТЕМАТИЧЕСКОГО
АНАЛИЗА
В СЖАТОМ ИЗЛОЖЕНИИ
т
ГОСУДАРСТВЕННОЕ ИЗДАТЕЛЬСТВО
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1962
517. 2
Ρ 69
ОГЛАВЛЕНИЕ
Предисловие . 6
Глава I. Введение в анализ . 7
§ 1. Функции и графики 7
§ 2. Пределы 11
§ 3. Некоторые замечательные пределы 23
§ 4. Непрерывные функции 26
Глава II. Дифференциальное исчисление функций одного переменного 35
§ 5. Производная 35
§ 6. Техника дифференцирования 39
§ 7. Техника дифференцирования (продолжение) 43
§ 8. Дифференциал 46
§ 9. Производные высших порядков 48
§ 10. Основные теоремы дифференциального исчисления 51
§ 11. Параметрические уравнения кривых 56
§ 12. Возрастание и убывание функций 60
§ 13. Формула Тейлора 62
§ 14. Экстремумы функций 65
§ 15. Выпуклость, вогнутость, точки перегиба 68
§ 16. Приближенное решение уравнений способом хорд и касательных 71
§ 17. Соприкасающийся круг 73
§ 18. Интерполирование 76
Глава III. Дифференциальное исчисление функций многих переменных 81
§ 19. Функции нескольких переменных - 81
§ 20. Неявные функции . . - 86
§ 21. Геометрические приложения частных производных 91
§ 22. Полный дифференциал 93
§ 23. Экстремумы функций многих переменных 90
§ 24. Частные производные высших порядков 100
4 ОГЛАВЛЕНИЕ
Глава IV. Интегральное исчисление функций одного переменного . . 106
§ 25. Определенный интеграл как предел суммы 106
§ 26. Теоремы о среднем для определенного интеграла и
определенный интеграл с переменным верхним пределом 114
§ 27. Неопределенный интеграл.
Связь между определенным и
неопределенным интегралами 118
§ 28. Интегрирование подстановкой и интегрирование по частям. Несобственные интегралы 122
§ 29. Интегрирование рациональных функций 127
§ 30. Интегрирование тригонометрических выражений 135
§ 31. Интегрирование иррациональностей 137
§ 32. Площади и объемы 141
§ 33. Гиперболические функции 146
§ 34. Спрямление дуг и площади поверхностей вращения 150
§ 35. Кривизна плоских кривых 155
§ 36. Приближенное вычисление интегралов 157
Глава V. Интегральное исчисление функций многих переменных . . . 163
§ 37. Интегралы, зависящие от параметра 163
§ 38. Криволинейные интегралы 166
§ 39. Интегрирование полных дифференциалов 172
§ 40. Двойные интегралы 176
§ 41. Формула Грина 183
§ 42. Замена переменных в двойном интеграле и приложения двойных
интегралов 188
§ 43. Поверхностные интегралы 194
§ 44. Тройные интегралы 197
§ 45. Замена переменных в тройном интеграле 204
Глава VI. Ряды 208
§ 46. Числовые последовательности и ряды 208
§ 47. Несобственные интегралы как аналоги ряда 212
§ 48. Признаки сходимости и расходимости рядов с положительными
членами 217
§ 49. Числовые ряды с любыми членами 220
§ 50. Функциональные последовательности и ряды 226
§ 51. Почленное интегрирование и дифференцирование
функциональных рядов " 231
§ 52. Степенные ряды 235
§ 53. Операции над степенными рядами 244
§ 54. Начальные сведения о рядах Фурье . . '. 247
ОГЛАВЛЕНИЕ 5
Глава VII. Дифференциальные уравнения 256
§ 55. Общие сведения о дифференциальных уравнениях 256
§ 56.