ю. и. млнин
КУБИЧЕСКИЕ ФОРМЫ
алгебра, геометрия, арифметика
ИЗДАТЕЛЬСТВО «НАУКА»
ГЛАВНАЯ РЕДАКЦИЯ
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
МОСКВА 1972
617. 1
M 23
УДК 512. 8
Кубические формы: алгебра, геометрия, арифме-
арифметика. Ма. нин Ю... И. , Изд-во «Наука», Главная
редакция физико-математической Литературы,
1972. Книга посвящена кругу задач, связанных с описа-
описанием множества решений уравнения третьей степени от
многих переменных. На геометрическом языке это — во-
вопрос об описании точек на кубической гиперповерхно-
гиперповерхности с координатами в данном поле. В классическом
одномерном случае на этот вопрос отвечает теория эл-
эллиптических кривых. Построению многомерного вариан-
варианта была посвящена серия журнальных работ автора,
результаты которых, систематизированные и расширен-
расширенные, излагаются в монографии. Кроме этого, книга
содержит введение в теорию одного класса иеассоциа-
тивных алгебраических структур (лупы Муфанг), со-
современное изложение теории 27 прямых на кубической
поверхности н ее связи с группами Вейля и новый под-
подход к теоретико-числовому принципу Минковского —
Хассе. Юрий Иванович Манин
КУБИЧЕСКИЕ ФОРМЫ
алгебра, геометрия, арифметика
М„ 1972, 304 стр. с илл. Редакторы А. И. Кострикин, В. В. Абгарян
Техн. редактор В. Н. Кондакова
Корректоры С. Н. Емельянова, И. Б. Мамулова
Сдано в набор 23/ХП 1971 г. Подписано к печати 26/V 1972 г. Бумага 84ХЮ8'/м,
тип. № I. Фнз. печ. л. 9,5. Услови. печ. -л. 15,96. Уч. -изд. л. 16,64. Тираж 8000 экз.
Т-07265. Цена книги I р. 29 к. Заказ № 1396
Издательство «Наука>
Главная редакция физико-математической литературы
117071, Москва, В-71, Ленинский проспект, 15
Ордена Трудового Красного Знамени
Ленинградская типография № 2 имени Евгении Соколовой Главполиграфпрома
Комитета по печати при Совете Министров СССР. Измайловский проспект, 29
2-2-3
46-78
ОГЛАВЛЕНИЕ
Предисловие 5
Указания читателю 12
Указатель обозначений 12
Глава I. СН-квазигруппы и лупы Муфанг 13
§ 1. Сводка определений и результатов 13
§ 2. Симметричные абелевы квазигруппы 18
§ 3. СН-квазигруппы 22
§ 4. Коммутативные лупы Муфанг 28
§ 5. Связь между СН-квазигруппами и лупами Муфанг . 31
§ 6. Морфизмы СН-квазигрупп н луп Муфанг 33
§ 7. Первая структурная теорема 35
§ 8. Вторая структурная теорема 33
§ 9. Конечные группы Фишера 39
§ 10. Нерешенные вопросы и литературные указания . . 44
Глава II. Классы точек иа кубических гиперповерхностях . . 47
§ 1. Допустимые отношения эквивалентности: обзор ... 47
§ 2. Унирациональность 51
§ 3. Универсальная эквивалентность 59
§ 4. /?-эквивалентность: основные свойства 67
§ 5. /^-эквивалентность и квадратичные расширения ... 72
§ 6. Универсальная эквивалентность над локальными поля-
полями. Примеры 76
§ 7. Литературные указания 83
Глава III. Двумерная бирациональиая геометрия 84
§ 1. Основные результаты 81
§ 2. Моноидальные преобразования . 93
§ 3. Моноидальные преобразования и дивизоры ... . 98
§ 4. Основные теоремы о бирациональных отображениях 108
§ 5. Литературные указания 120
Глава IV.