Читать онлайн «Опорный конспект лекций по микроэкономике»

Автор Е. В. Савицкая

Е. В. Савицкая ОПОРНЫЙ КОНСПЕКТ ЛЕКЦИЙ ПО МИКРОЭКОНОМИКЕ МОСКВА — 2002. РАЗДЕЛ I. ТЕОРИЯ ПОВЕДЕНИЯ ПОТРЕБИТЕЛЯ ГЛАВА 1. Отношение предпочтения, функция полезности и бюджетное ограничение потребителя. §1. Отношение предпочтения и его свойства. Проблема, с которой потребитель сталкивается в рыночной экономике, состоит в том, чтобы выбрать такие уровни потребления различных товаров и услуг, которые были бы доступны для их покупки на рынке. Мы назовём эти товары и услуги благами. Для простоты предположим, что число благ конечно и равно N : n = 1, 2,…, N . Пространство благ, включающее в себя различные количества всевозможных товаров и услуг, будем обозначать R N . Товарный, или потребительский, набор есть перечень количеств благ из данного пространства, которые индивид потребляет в течение определённого периода времени. Товарный набор может быть рассмотрен как точка в пространстве благ и обозначается следующим образом: (1. 1) x = ( x1 , x2 ,... , xN ), где xn - количество блага n ( n = 1, 2,…, N ). Пусть, например, первое благо – это картофель, второе – молоко, третье – свинина. И наш потребитель в течение недели потребляет 3 кг картофеля, 5 л молока и 2 кг свинины, а всеми остальными товарами и услугами не пользуется. Тогда его товарный набор будет представлен так: x = ( 3,5,2 ,0 ,...
,0 ). Таким образом, понятие товарного набора используется экономистами для того, чтобы представить уровни потребления индивида. Потребительское множество представляет собой все товарные наборы с неотрицательным количеством благ: (1. 2) X = R+N = { x ∈ R N : xn ≥ 0 для n = 1,... , N }. Потребительское множество есть подмножество пространства благ, обозначаемое X ⊂ R N , элементы которого являются такими товарными наборами, которые потребитель, в принципе, может потребить при физических ограничениях, заданных его окружающей средой. Употребляется термин «отношение предпочтения», которое обозначается символом . Пусть x , y – товарные наборы из потребительского множества X , где x = ( x1 ,... , x N ) , y = ( y1 ,... , y N ) . Тогда отношение x y означает, что для рассматриваемого потребителя товарный набор x предпочтительнее или, по меньшей мере, так же хорош, как набор y . Кроме того, выделяют отношение строго предпочтения ( x y ) и отношение безразличия ( x ~ y ). Отношение строгого предпочтения означает, что набор x явно лучше для нашего потребителя, чем набор y . Отношение безразличия означает, что потребителю всё равно, какой товарный набор потребить x или y . Предпосылка о сравнимости утверждает, что индивид имеет чётко определённое отношение предпочтения между любыми двумя товарными наборами из потребительского множества: (1. 3) ∀ x , y ∈ X : или x y , или y x , или x ~ y . Свойство транзитивности отношения предпочтения также является очень сильной предпосылкой и составляет сердцевину концепции рациональности индивида.