Читать онлайн «Лекции по нелинейной динамике: элементар. введение: учебное пособие для студентов физ.-хим. специальностей вузов»

Автор Данилов Ю.А.

Серия «Синергетика: от прошлого к будущему» Ю. А. Данилов ЛЕКЦИИ ПО НЕЛИНЕЙНОЙ ДИНАМИКЕ Элементарное введение Рекомендовано в качестве учебного пособия для студентов физико-математических и физико-химических специальностей вузов Издание второе, исправленное МОСКВА URSS ББК 22. 318 Данилов Юлий Александрович Лекции по нелинейной динамике. Элементарное введение: Учебное пособие / Предисл. Г. Г. Малинецкого. Изд. 2-е, испр. — М. : Ком Книга, 2006. 208 с. (Синергетика: от прошлого к будущему. ) ISBN 5-484-00183-8 В основу настоящего учебного пособия легли лекции, которые выдающийся ученый, педагог, популяризатор науки Юлий Александрович Данилов читал на химическом факультете МГУ им. М. В. Ломоносова, на «Нелинейных днях для молодых» в СГУ им. Н. Г. Чернышевского, а также в МИФИ и университетах Западной Европы. В пособии подробно изложены дискретные отображения и теория непрерывных систем, хаотическое поведение, фрактальная теория и степенные законы, синергетика и эргодическая теория. Отличительной особенностью курса является конкретность (доведение формул до вида, удобного для практических расчетов) и точное изложение основных понятий, обычно приводимых без определений. Для студентов и аспирантов физико-математических, биологических и химических специальностей, а также для всех, кто интересуется современным состоянием науки о поведении сложных систем различной природы (от физических до социальных, экономических и т. п. ). Издательство «КомКнига». 117312, г.
Москва, пр-т 60-летия Октября, 9. Подписано к печати 28. 10. 2005 г. Формат 60x90/16. Бумага типографская. Печ. л. 13. Зак. № 270. Отпечатано в ООО «ЛЕНАНД». 117312, г. Москва, пр-т 60-летия Октября, д. ПА, стр. 11. ISBN 5-484-00183-8 Ю. А. Ясность, красота, гармония (Г. Г. Малинеикий) 12 Лекция 1 Что такое нелинейная линамика? 16 Введение 16 Принцип суперпозиции 18 Нелинейное мышление Л. И. Мандельштама 19 Дискретные отображения 21 Наследственные свойства итераций 22 &-цикл 23 Треугольное отображение 23 Сдвиги Бернулли 24 Вопросы и упражнения к лекции 1 27 Лекция 2 Квалратичное отображение 28 Квадратичное отображение 28 Лекции по нелинейной динамике 3 Оглавление Неподвижные точки 28 Устойчивость неподвижной точки 29 Экстремум 30 Универсальности Фейгенбаума 34 Порядок Шарковского 37 Двумерные дискретные отображения. Кошка Арнольда 38 Гиперболичность 41 Неподвижные точки отображения «кошка Арнольда» . . 43 Топологически сопряженные отображения 47 Вопросы и упражнения к лекции 2 48 Лекция 3 Непрерывные системы 50 Сечение Пуанкаре 52 Индекс Пуанкаре 53 Остов фазового портрета 55 Система Лоренца 56 Свойства системы Лоренца 58 Неподвижные точки системы Лоренца 61 Устойчивость по Ляпунову 62 Вопросы и упражнения к лекции 3 67 Лекция 4 Еше олин взглял на систему Э.